Solve for x :

$$
\begin{aligned}
& \begin{array}{l}
10 x^{2}-11 x-8=4 x^{2}+8 x+28 \\
-4 x^{2}-2 x-28 \\
6 x^{2}-19 x-36
\end{array} \\
& \begin{array}{|c|c|}
\hline 2 x & -9 \\
3 & 6 x^{2} \\
+ & 27 x \\
\hline 4 & 8 x \\
\hline
\end{array}
\end{aligned}
$$

3. 122°
4. 136°
5. 108°
36°
6. 108°
106°
7. 105°
82°
8. 120°
38°
9. The sum of the interior angle measures c the quadrilateral is 358°. It should be 36 C
10. $a=116^{\circ}, b=64^{\circ}, c=90^{\circ}, d=82^{\circ}, e=99^{\circ}, f$ $=88^{\circ}, g=150^{\circ}, h=56^{\circ}, j=106^{\circ}, k=74^{\circ}, m$ $=136^{\circ}, n=118^{\circ}, p=99^{\circ}$; Possible explanation: The sum of the angles of a quadrilateral is 360°, so $a+b+98^{\circ}+d=$ 360°. Substituting 116° for a and 64° for b gives $d=82^{\circ}$. Using the larger quadrilateral, $e+p+64^{\circ}+98^{\circ}=360^{\circ}$. Substituting e for p, the equation simplifies to $2 e=198^{\circ}$, so e $=99^{\circ}$. The sum of the angles of a pentagon is 540°, so $e+p+f+138^{\circ}+116^{\circ}=540^{\circ}$. Substituting 99° for e and p gives $f=88^{\circ}$.
5.2 Investigation on Sketchpad

Exterior Angle Sum Conjecture: for any polygon, the sum of the measures of a set of exterior angles is 360 .

Equiangular Polygon Conjecture: you can find the measure of each interior angle of an equiangular n-gon by using either of these formulas: $180-(360 / n)$ or [180(n-2)]/n.

November 1, 2019

