Solve for x:

$$\frac{10x^{2} - 11x - 8 = 4x^{2} + 8x + 28}{4x^{2} - 6x - 36}$$

$$\frac{10x^{2} - 19x - 36}{4x^{2} - 6x - 36}$$

$$\frac{3x^{2} - 19x - 36}{3x^{2} - 19x - 36}$$

$$\frac{3x^{2} - 19x - 36}{3x^{2} - 19x - 36}$$

- 3. 122°
- 4. 136°
- 5. 108°
 - 36°
- **6.** 108°
 - 106°
- 7. 105°
 - 82°
- 8. 120° 38°
- **9.** The sum of the interior angle measures c the quadrilateral is 358°. It should be 360
- 12. $a = 116^\circ$, $b = 64^\circ$, $c = 90^\circ$, $d = 82^\circ$, $e = 99^\circ$, $f = 88^\circ$, $g = 150^\circ$, $h = 56^\circ$, $j = 106^\circ$, $k = 74^\circ$, $m = 136^\circ$, $n = 118^\circ$, $p = 99^\circ$; Possible explanation: The sum of the angles of a quadrilateral is 360° , so $a + b + 98^\circ + d = 360^\circ$. Substituting 116° for a and 64° for b gives $d = 82^\circ$. Using the larger quadrilateral, $e + p + 64^\circ + 98^\circ = 360^\circ$. Substituting e for e, the equation simplifies to e0. Substituting e10 for e110 for e2110 for e2110 for e3110 for e3

5.2 Investigation on Sketchpad
Exterior Angle Sum Conjecture : for any polygon, the sum of the measures of a set of exterior angles is 360.
Equiangular Polygon Conjecture : you can find the measure of each interior angle of an equiangular n-gon by using either of these formulas: 180-(360/n) or [180(n-2)]/n.

